

a) Determine *the initial count (a)*, *the rate (r)*, and *growth or decay factor (b)*.

 $a = _$ $r = _$ $b = (1 \pm r) = _$

- b) Write a function that models the change in the number of players left after any round.
- c) What would be the number of players left after 4 rounds?
- 2) Marc bought a new laptop for \$1250. He kept track of the value of the laptop over the next three years, as shown in the table below.

Years After Purchase	Value in Dollars
1	1000
2	800
3	640

a) Determine the initial count (a), the rate (r), and growth or decay factor (b).

a = ____ **r** = ____ **b** = $(1 \pm r)$ = _____ b) Write a function that can be used to determine the value of the laptop for *x* years after the purchase.

c) What would be the value of the laptop 5 years after it was purchased?

3) The equation V(t) = 12,000 (0,75) represents the value of a motorcycle t years after it was purchased.

a) Identify the *initial count (a)*, *the rate (r)*, and *growth or decay factor (b)*.

a =____ r = ____ $b = (1 \pm r)$ = _____

b) What would be the value of a motorcycle 7 years after it was purchased?

c) Graph the function. Estimate the number of years until the motorcycle would be worthless.

4) Materials *A* and *B* decay over time. The function for the amount of material *A* is $A(t) = 1000(0.5)^{2t}$ and for the amount of material *B* is $B(t) = 1000(0.25)^{t}$, where *t* represents time in days.

(Hint: Please complete the following table and compare the values of the two materials)

DAY	<u>Material A</u>	Material B
	$A(t) = 1000(0.5)^{2t}$	$B(t) = 1000(0.25)^t$
1		
2		
3		
4		
5		
6		

On which day will the amounts of material be equal? Explain.